

Property Stereotype for Metadata

Johannes Echterhoff (interactive instruments GmbH)

Version: 1.0

Status: Final

Date: Nov 29, 2019

Page 1

History

Version Status Date Author(s) Description

1.0 Final Nov, 29,

2019

Johannes Echter-

hoff

Finalize documentation

Page 2

Contents

1 Terms and Definitions ... 6

1.1 Abbreviated Terms .. 6

1.2 Definitions ... 7

1.2.1 Application schema .. 7

1.2.2 Class .. 7

1.2.3 Conceptual formalism ... 7

1.2.4 Conceptual model ... 7

1.2.5 Conceptual schema .. 7

1.2.6 Conceptual schema language ... 8

1.2.7 Model ... 8

1.2.8 Schema .. 8

1.2.9 Stereotype .. 8

1.2.10 Universe of discourse .. 8

2 Property Stereotype for Metadata in Application Schemas ... 9

2.1 Current NAS Modeling Approach... 9

2.2 Platform Independent Modeling with Property Stereotype for Metadata 12

2.3 Platform-Specific Encoding for Property Stereotype <<propertyMetadata>> 17

2.3.1 XML Encoding ... 17

2.3.1.1 Data Referencing Metadata .. 18

2.3.1.2 Metadata Referencing Data .. 19

2.3.1.3 Metadata as Additional Data.. 23

2.3.1.4 Data with Metadata Range ... 25

2.3.1.5 Summary .. 26

2.3.2 JSON, SQL, GML-SF Encodings ... 29

2.3.3 Linked Data Encoding ... 31

3 Annex A - Multiple Property Stereotypes for Metadata.. 36

4 Bibliography ... 38

Page 3

Figures

Figure 1 – Current approach for modeling property metadata in the NAS, using specific Meta-

and Reason-classes ... 10

Figure 2 - The datatype which carries the metadata characteristics in the current NAS

modeling approach ... 11

Figure 3 – New approach for modeling property metadata in the NAS, using property

stereotype <<propertyMetadata>> ... 12

Figure 4 – Example of instantiable metadata types, with identity ... 14

Figure 5 – Example of properties with stereotype <<propertyMetadata>> referencing

different metadata types via tagged value “metadataType” ... 15

Figure 6 - New approach for modeling in the NAS, using property stereotypes

<<propertyMetadata>> and <<voidable>> .. 17

Figure 7 – Example of transformed metadata types for the Metadata References Data

approach ... 20

Figure 8 – AnyFeature in ISO 19109:2015 ... 21

Figure 9 – Property stereotype for metadata transformed to metadata properties 23

Figure 10 - Example for an alternative approach for modeling property metadata in the NAS,

using multiple property stereotypes for metadata ... 36

Page 4

Tables

Table 1 – Comparison of XML encoding approaches for property stereotype

<<propertyMetadata>> .. 27

Page 5

Listings

Listing 1 – XML example for Data Referencing Metadata approach .. 18

Listing 2 – XML example for Metadata Referencing Data approach .. 21

Listing 3 – XML example for Metadata as Additional Data approach .. 24

Listing 4 – XML example for Data with Metadata Range approach .. 25

Listing 5 – JSON example for Metadata as Additional Data approach ... 31

Listing 6 – Example of property metadata encoded using RDF Reification – Turtle syntax 33

Listing 7 – Example of property metadata encoded using RDF Reification – RDF/XML syntax

 .. 34

Page 6

1 Terms and Definitions

1.1 Abbreviated Terms

DDL Data Definition Language

FES Filter Encoding Specification

GEOINT Geospatial Intelligence

GFM General Feature Model

GML Geography Markup Language

GML-SF GML Simple Features

IETF Internet Engineering Task Force

INSPIRE Infrastructure for Spatial Information in Europe

ISO International Organization for Standardization

JSON JavaScript Object Notation

NAS NSG Application Schema

NEO NSG Enterprise Ontology

NSG U.S. National System for Geospatial Intelligence

O&M Observations and Measurements

OCL Object Constraint Language

OGC Open Geospatial Consortium

OWL Web Ontology Language

RDF Resource Description Framework

RFC Request for Comments

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SVN Subversion

UGAS UML to GML Application Schema

UML Unified Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XMI XML Metadata Interchange

XML Extensible Markup Language

XPath XML Path Language

XSL Extensible Stylesheet Language

XSLT XSL Transformation

Page 7

1.2 Definitions

1.2.1 Application schema

Conceptual schema (1.2.5) for data required by one or more applications.

[SOURCE: ISO 19101-1:2014, 4.1.2]

1.2.2 Class

Unified Modeling Language (UML) - Description of a set of objects that share the same specifica-

tions of features (attributes and operations), constraints, and semantics.

[SOURCE: UML 2.4.1, modified – slightly reworded and content in parentheses added as clarifica-

tion]

1.2.3 Conceptual formalism

Set of modeling concepts used to describe a conceptual model (1.2.4)

[SOURCE: ISO 19101-1:2014, 4.1.4]

Example: UML meta model, EXPRESS meta model.

Note: One conceptual formalism can be expressed in several conceptual schema languages

(1.2.6).

1.2.4 Conceptual model

Model (1.2.7) that defines concepts of a universe of discourse (1.2.10)

[SOURCE: ISO 19101-1:2014, 4.1.5, modified – Notes have been added.]

Note: It is often the case that the concepts defined by a conceptual model are formed into groups,

which are meaningful to one or more application domains. These groups, being subsets of the

whole model, are themselves conceptual models. A group typically consists of a set of concepts,

but may also consist of only a single concept.

Note: Conceptual models are formally described by conceptual schemas (1.2.5). A conceptual

model, more specifically its subsets, can thus be described by multiple conceptual schemas. With

UML being used as conceptual schema language (1.2.6), a UML model as a whole formally repre-

sents a conceptual model. The UML model may also be comprised of multiple UML packages,

each of which may formally represent a conceptual schema.

1.2.5 Conceptual schema

Formal description of a conceptual model (1.2.4)

[SOURCE: ISO 19101-1:2014, 4.1.6, modified – Note has been added.]

Page 8

Note: Conceptual schemas for geographic information are typically modeled using UML as the

conceptual schema language (1.2.6). UML defines the concept of stereotype (1.2.9), which is es-

sential to this report. ISO 19103 and ISO 19109, for example, define stereotypes <<CodeList>>

and <<FeatureType>> for classes, which give these classes specific meaning.

1.2.6 Conceptual schema language

Formal language based on a conceptual formalism (1.2.3) for the purpose of representing

a conceptual schema (1.2.5)

EXAMPLES UML, EXPRESS, IDEF1X

NOTE A conceptual schema language may be lexical or graphical. Several conceptual schema

languages can be based on the same conceptual formalism.

[SOURCE: ISO 19101-1:2014, 4.1.7]

1.2.7 Model

Abstraction of some aspects of reality

[SOURCE: ISO 19109:2015, 4.15, modified – Note has been added.]

Note: The term model is often used as a shorthand-notation for the term conceptual model

(1.2.4).

1.2.8 Schema

Formal description of a model (1.2.7)

[SOURCE: ISO 19101-1:2014, 4.1.34, modified – Note has been added.]

Note: The term schema is often used as a shorthand-notation for the term conceptual schema

(1.2.5).

1.2.9 Stereotype

<UML> extension of an existing metaclass that enables the use of platform or domain specific

terminology or notation in place of, or in addition to, the ones used for the extended metaclass

[SOURCE: UML 2.4.1]

1.2.10 Universe of discourse

View of the real or hypothetical world that includes everything of interest

[SOURCE: ISO 19101-1:2014, 4.1.38]

Page 9

2 Property Stereotype for Metadata in Application Schemas

NOTE: This document was created during the OGC UML-to-GML Application Schema (UGAS) Pi-

lot (UGAS-2019), an initiative within the OGC Innovation Program.

2.1 Current NAS Modeling Approach

The NSG Application Schema (NAS) is based upon the General Feature Model (GFM), which is de-

fined by ISO 19109:2015. As such, the NAS defines a number of feature types, which represent

objects that are important to geospatial intelligence (GEOINT) applications. These feature types

typically have a number of properties, i.e. attributes (whose values do not have identity) and as-

sociation roles (whose values do have identity and can therefore be shared).

The NAS supports metadata for attribute values, which can be used to (for example):

 Interpret a value, e.g., numeric unit-of-measure, numeric precision.

 Relate a value to other values, e.g., reference datum (numeric zero point).

 Specify the quality of a value, e.g., accuracy.

 Specify the provenance of a value, e.g., source or process by which, and/or conditions un-

der which, the value was determined, estimated, or predicted.

 Characterize the absence of an expected value, e.g., inapplicable in the context in which
the data collection took place.

Note: Metadata for values of association roles is currently not supported by the NAS.

The NAS uses specific Meta- and Reason-classes to incorporate this metadata. Figure 1 provides

an example.

https://www.opengeospatial.org/projects/initiatives/ugas2019
https://www.opengeospatial.org/projects/initiatives/ugas2019

Page 10

Figure 1 – Current approach for modeling property metadata in the NAS, using specific Meta- and Reason-classes

Classes FeatureA and FeatureB, together with FeatureBCategoryType and Boolean (not shown in

Figure 1), represent “normal” data, while the other classes represent a way to explicitly model

metadata about the values of the attributes.

The metadata is only hinted at in Figure 1 by the presence of DatatypeMeta, a supertype of the

two classes BooleanMeta and FeatureBCategoryMeta. Figure 2 shows the content model of the

abstract type DatatypeMeta. Note that, for brevity, only a few metadata characteristics defined

by the NAS are shown.

Page 11

Figure 2 - The datatype which carries the metadata characteristics in the current NAS modeling approach

This approach to modeling metadata for attribute values introduces a high degree of complexity,

both in the actual model and in platform-specific encodings (e.g. Extensible Markup Language

(XML) and Resource Description Framework (RDF) / Web Ontology Language (OWL)). Issues

that have been raised for this approach are:

 The actual cardinality of a feature property is not directly visible for that property. For
example, the cardinality of FeatureB.attribute2 is shown as 0..1, but – when combined

with the cardinality of FeatureBCategoryReason.values – it is 0..*.

 The Meta- and Reason-classes introduce a level of indirection which is unfamiliar to the
typical user (modeling expert, software developer, etc.) and can result in reduced com-

prehension due to the increase in model complexity.

o For example, instead of saying “FeatureB has attribute2 with values category1

and category2”, one needs to say “FeatureB has attribute2 with a FeatureBCatego-

ryMeta whose valuesOrReason is a FeatureBCategoryReason whose values prop-

erty has the values category1 and category2”.

o An Object Constraint Language (OCL) constraint intended to restrict the value of

FeatureA.attribute1 to true must take the Meta- and Reason-classes into account

within the OCL expression. Instead of the simple invariant (in the context of class

FeatureA) “attribute1 = true”, the expression would have to be “attribute1.val-

ueOrReason.value = true”. With a more elaborate expression, for example check-

ing properties based upon the values of other properties, the level of complexity

caused by the Meta- and Reason-classes increases exponentially.

 Humans and – sometimes – software tools struggle with the size of the application
schema, which is considerably increased by the presence of the Meta- and Reason-clas-

ses.

To summarize: The current approach to explicitly modeling attribute metadata in the NAS is dif-

ficult to understand and maintain. A primary goal of the UGAS-2019 Pilot therefore is to make

the application schema of the NAS more user-friendly and the actual (NAS-conformant) data

more accessible.

Page 12

2.2 Platform Independent Modeling with Property Stereotype for

Metadata

In order to solve the complexity issues caused by the current modeling approach of the NAS, a

new property stereotype is introduced: <<propertyMetadata>>1. This stereotype, when as-
signed to a property, indicates that metadata is associated with values of the property.

Note: Instead of using multiple different metadata types, applications typically only use a single

type of metadata for describing an object or a (set of) property value(s). Accordingly, the analy-

sis is based on the constraint that at most one property stereotype for metadata is defined per

UML property.

When applying the property stereotype to the example from Figure 1, the conceptual model can

be simplified significantly – see Figure 3.

Figure 3 – New approach for modeling property metadata in the NAS, using property stereotype <<propertyMetadata>>

Note: As mentioned in section 2.1, the NAS currently does not support metadata for values of as-

sociation roles. Consequently, the association in Figure 1 looks “normal”, i.e. there are no specific

stereotypes on that association. In Figure 3, however, the roles of the association do have a ste-

reotype: <<propertyMetadata>>. This may look like added complexity. However, it is just an ex-

ample that shows that the new stereotype can be applied on properties in general, i.e. both at-

tributes and association roles. That is a considerable improvement, not only regarding simplicity

1 A community might prefer a different name for the new stereotype, for example <<propMeta>>. This is possible,

especially if tools they use to process the conceptual model can determine that a stereotype with another

name identifies the same concept as stereotype <<propertyMetadata>>. ShapeChange, for example, allows us-

ers to configure stereotype aliases, with which <<propMeta>> can be mapped to the well-known stereotype

<<propertyMetadata>>.

Page 13

(of the model) but also regarding functionality (since metadata can also be associated with the

values of association roles).

Different properties may be associated with different types of metadata, and applications may

need to identify which type of metadata is associated with a specific property. To support this,

tagged value metadataType has been defined. It can be used in combination with stereotype

<<propertyMetadata>>. The tagged value identifies the applicable metadata type, as follows:

 If the type is defined by the schema that contains the property, then the tagged value

simply provides the name of the type.

 Otherwise, the tagged value shall identify the type by its full package-qualified name,

starting with the application schema package. For example: "Some Application

Schema::Some Subpackage::Another Subpackage::MetadataType".

o NOTE: In order for the qualified name to lead to the intended type, it is important

that the schema structure and the type name does not change – also that the type

actually is contained in the model. In rare cases, model transformations could re-

sult in such changes. Another situation where such a change can occur is when a

schema that uses <<propertyMetadata>> - with metadataType referring to a type

from an external schema - is shared with another user2, and the other user has a

slightly different version of the external schema in his UML model, for example

with altered package structure. If ShapeChange cannot find the type based upon

its qualified name, but requires that type to perform a certain task (e.g. applying

a model transformation as described in section 2.3.1.3), ShapeChange will log an

error.

Figure 4 provides an example of how NAS metadata types could be modeled. Note the two types

AttMeta and RoleMeta, which represent examples of different metadata types, one for attributes

and one for association roles.

2 For example via XML Metadata Interchange (XMI) exports that are hosted in a Subversion (SVN) repository to

which both users have access.

Page 14

Figure 4 – Example of instantiable metadata types, with identity

Note: If metadata shall be referenceable, the metadata type should have identity, and should

consequently be modeled accordingly (e.g. as shown in Figure 4). Metadata with identity can be

shared and re-used. In case of the NAS, security markings are well suited for sharing and re-use.

The way that metadata is identified and the way in which metadata can be referenced depends

on the approach for governing metadata, and is the responsibility of each community.

Figure 5 illustrates how tagged value metadataType would be set for the <<propertyMetadata>>

properties from the example in Figure 3, in order to reference the two metadata types from the

example in Figure 4.

Page 15

Figure 5 – Example of properties with stereotype <<propertyMetadata>> referencing different metadata types via tagged

value “metadataType”

In platform-specific encodings, the data can include the metadata, it can reference the metadata,

or it can be referenced by the metadata. Whether metadata is referenced by or references the

actual data depends on both the data and the metadata formats and/or the rules regarding how

both are maintained, stored and published. It may even be possible to have bi-directional links

between data and metadata. The topic of navigability to/from metadata will be discussed in

more detail in section 2.3, when approaches for representing the <<propertyMetadata>> stereo-

type in implementation schemas are presented.

The approach of using a property stereotype for modeling property metadata has the following

advantages:

 The simplified model looks like any other application schema. It should be much easier
to understand and maintain. Only the property stereotype needs to be added where ap-

plicable.

 Without the Meta- and Reason-classes:
o The cardinality of a property is directly visible.

o OCL expressions can be formulated in a natural way.

o The size of the model has decreased significantly.

o The model clearly separates the domain aspects from the metadata.

There is precedence for the use of property stereotypes with specific meaning in application

schemas:

Page 16

 The UML profile defined by ISO 191093 includes the property stereotype <<estimated>>,

which indicates that the property value is assigned using an observation procedure.

 The UML profile defined by the Infrastructure for Spatial Information in Europe (IN-

SPIRE) Generic Conceptual Model4 contains <<voidable>> as stereotype for properties.

Such a property may have the value of void (often also called null) to indicate that the

characteristic represented by the property is not present in the spatial data set, but may

be present or applicable in the real world. In INSPIRE, it is possible to qualify a value of

void in the data with a reason using the INSPIRE VoidReasonValue type.

Note: The PropMeta type in Figure 4 defines an absenceReason, which, like the reason property

from the Reason-classes in the current NAS, can be used to qualify the reason why no value or a

void/null value is given for a property. Alternatively, an additional property stereotype like

<<voidable>> (or a stereotype with same meaning) can be used to indicate that in actual data,

void/null values can be qualified with a reason – instead of explicitly encoding such a reason in

the metadata type(s). The set of applicable absence reason codes may depend on the value type

of a property5. It would be the same for all properties with that value type. If different sets of

reason codes need to be defined by the model6 then the model should define these sets as enu-
merations. In order to indicate which absence reasons apply for a given property, set tagged

value voidReasonType for that property7. The value of that tag identifies the enumeration - using
the same approach as defined for tag metadataType.

For the NAS, it is recommended to not model absence reasons within property metadata types.

Instead, the fact that a property value can be void and should be qualified with an absence rea-

son should be modeled using stereotype <<voidable>> (in conjunction with tagged value

voidReasonType, to indicate the applicable set of absence reasons). If metadata for that property

can be defined as well, the <<propertyMetadata>> stereotype should be added to the property.

Consequently, a UML property in the NAS can have multiple stereotypes, for example <<proper-

tyMetadata, voidable>>. Figure 6 illustrates the use of multiple stereotypes per property, based

upon the example model from Figure 3.

3 See ISO 19109:2015, section 8.2.2, table 17.

4 See INSPIRE Generic Conceptual Model, version 3.4, section 9.4.6 requirement 18, and section 9.6.3, table 2.

5 For the NAS, that is the case: the sets of absence reasons for numeric and other types are different.

6 An alternative could be to apply an external validation mechanism on encoded data.

7 A UML profile that contains stereotype <<voidable>> could add tagged value voidReasonType to that stereotype,

with allowed values restricted to a certain set of enumeration names, and a default value.

Page 17

Figure 6 - New approach for modeling in the NAS, using property stereotypes <<propertyMetadata>> and <<voidable>>

Note: Property metadata can be defined for individual property values, and/or for the whole set

of values of a property. In principle, the new approach to use the <<propertyMetadata>> stereo-

type for properties that can have metadata supports both. However, the platform-specific

metadata format may only support one way (metadata for individual property values or for all

values of a property). Ultimately, the application community has to decide which kind of prop-

erty metadata it needs, and choose the platform-specific metadata format accordingly.

2.3 Platform-Specific Encoding for Property Stereotype <<proper-

tyMetadata>>

2.3.1 XML Encoding

Four alternative approaches for encoding the <<propertyMetadata>> stereotype in XML have

been identified:

 data referencing metadata

 metadata referencing data

 metadata as additional data

 data with metadata range

The following sections document each approach. Section 2.3.1.5 provides a summary, including a

table for comparing the approaches.

Note that all options assume that the XML encodings of the data use the object-property-value

pattern as used by ISO 19136 Geography Markup Language (GML) and the ISO/TS 19115-3 /

ISO/TS 19139 encoding rule.

Page 18

2.3.1.1 Data Referencing Metadata

This encoding approach adds another XML attribute to property elements, with which metadata

objects can be referenced. In the example shown in Listing 1, the name of that XML attribute is

metadata8.

Note: Using an XML attribute to convey additional information for a property value, in this case

to reference a metadata object, is an already established approach in GML: the nilReason XML

attribute can also be used to provide additional information for a property value.

Listing 1 – XML example for Data Referencing Metadata approach

<xml xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <FeatureA gml:id="FA">

 <attribute1 metadata="#M1" xsi:nil="true" nilReason="…"/>

 <roleAtoB metadata="#M2" xlink:href="#FB"/>

 </FeatureA>

 <FeatureB gml:id="FB">

 <attribute2 metadata="#M3">category1</attribute2>

 <attribute2 metadata="#M3">category2</attribute2>

 <roleBtoA metadata="#M4" xsi:nil="true" nilReason="…"/>

 </FeatureB>

 <AttMeta gml:id="M1">...</AttMeta>

 <RoleMeta gml:id="M2">...</RoleMeta>

 <AttMeta gml:id="M3">...</AttMeta>

 <RoleMeta gml:id="M4">...</RoleMeta>

</xml>

Each XML element that represents a property can use this XML attribute to reference a metadata

object. In the example, the property attribute2 has multiple values, but each property element

references the same metadata object (#M3). The property elements could just as well reference

different metadata objects. The example was constructed with the current property metadata

scope of the NAS in mind (where a single metadata instance is often provided for the whole set

of values of a property).

Note: The example shows the nilReason XML attribute. The content of PropMeta objects has been

omitted, even though the conceptual model shown in Figure 4 defines the absenceReason attrib-

ute for PropMeta. Whether or not nilReason should play a role in the XML encoding depends on

the particular schema:

8 The type of the metadata XML attribute would be xs:anyURI. Absolute and relative URIs to reference metadata

objects are allowed. This is similar to the XML attribute xlink:href.

Page 19

 If 1) nilReason is already used in the current schema encoding, or 2) the metadata format

does not contain an XML element corresponding to the absenceReason UML attribute,

then use the nilReason XML attribute.

 However, if the metadata format does contain a suitable XML element, then use it and ig-
nore the nilReason XML attribute.

This encoding approach is compatible with GML, and consistent with existing encoding rules. It

avoids cluttering data with metadata, even though access to the metadata of a property is still

straightforward. XML encoded data would simply contain additional metadata XML attributes

for all XML elements that encode property values for which metadata is available. A metadata

XML attribute contains the information to get this metadata. It is therefore comparable to the

GML byReference encoding, where an xlink:href XML attribute contains the information to get

the referenced object.

2.3.1.2 Metadata Referencing Data

In this encoding approach, a metadata object has some means to identify the object and the

property for which metadata is provided. The actual data has no link to the metadata. It is the

other way round (metadata references data).

The conceptual model of the metadata types from the example in Figure 4 do not have means to

reference the relevant object and property. Thus, a model transformation is used to add proper-
ties – with which such references can be made – to relevant property metadata types. Figure 7

shows the result of this transformation, when applied to the metadata types from Figure 4. The

two properties “object” and “property” have been added to PropMeta.

Note: If the conceptual model of metadata types already had the means to identify the object and

property for which metadata is provided, then of course such a model transformation would not

be necessary.

Page 20

Figure 7 – Example of transformed metadata types for the Metadata References Data approach

There are conceptual issues with this approach:

 The value type of property object is AnyFeature. The type is specified in ISO 19109:2015
as “an abstract class that is the generalization of all feature types”. ISO 19109:2015 re-

quires that any feature type in an application schema has to be a subtype of AnyFeature9.
This requirement is implemented in an application schema that is compliant to ISO

19109:2015. However, application schemas that are only compliant to an older version

of ISO 19109, and not to ISO 19109:2015, do not use of AnyFeature. That would result in

a mismatch between the transformed metadata type model – which uses AnyFeature to

reference the object to which the metadata applies – and the application schema – whose

feature types do not inherit from AnyFeature.

9 Requirement /req/uml/feature states: “An instance of FeatureType shall be implemented as a CLASS. The CLASS

shall carry the STEREOTYPE «FeatureType». The CLASS shall have a GENERALIZATION ASSOCIATION with

AnyFeature.”

Page 21

Figure 8 – AnyFeature in ISO 19109:2015

 The value type of property property is URI, but conceptually it would be the metaclass
PropertyType (from ISO 19109:2015). That is, valid values of property are instances of

PropertyType, i.e., elements in the model / application schema. In an application schema

specified in UML this would be an attribute or association role of a feature. As this would

use a metaclass in the application schema or a model element in instance data, the ab-

straction levels are no longer clearly separated. There is no generally supported mecha-

nism to represent references to such model elements in instance data, for example in an

XML instance document. This issue is reflected in the fact that a general URI is used as

the value type. Data publishers will have to specify how URIs identify the property.

Note that ISO 19156 / O&M basically has the same issues (properties featureOfInterest and ob-

servedProperty).

With the conceptual model for data shown in Figure 3, and the conceptual model for the

metadata types illustrated in Figure 7, XML data where metadata references data can be created.

Listing 2 provides an example.

Listing 2 – XML example for Metadata Referencing Data approach

<xml xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <FeatureA gml:id="FA">

 <attribute1 xsi:nil="true" nilReason="…"/>

 <roleAtoB xlink:href="#FB"/>

 </FeatureA>

 <FeatureB gml:id="FB">

 <attribute2>category1</attribute2>

 <attribute2>category2</attribute2>

 <roleBtoA xsi:nil="true" nilReason="…"/>

 </FeatureB>

 <AttMeta gml:id="M1">

Page 22

 <object xlink:href="#FA"/>

 <property>http://example.org/schema/FeatureA/attribute1</property>

 ...

 </AttMeta>

 <RoleMeta gml:id="M2">

 <object xlink:href="#FA"/>

 <property>http://example.org/schema/FeatureA/roleAtoB</property>

 ...

 </RoleMeta>

 <AttMeta gml:id="M3">

 <object xlink:href="#FB"/>

 <property>http://example.org/schema/FeatureB/attribute2</property>

 ...

 </AttMeta>

 <RoleMeta gml:id="M4">

 <object xlink:href="#FB"/>

 <property>http://example.org/schema/FeatureB/roleBtoA</property>

 ...

 </RoleMeta>

</xml>

The example uses an encoding that is somewhat similar to the encoding of O&M observations.

While object references via xlink:href are common enough, the identification of a property is not.

The example shows how metadata for all values of a property can be defined, though in a rather

application specific way10. If metadata for individual property values was needed, the referenc-

ing mechanism within the metadata format would have to become even more elaborate.

Notes:

 The discussion regarding the encoding of reasons for the absence of a property value is
the same as for the Data Referencing Metadata approach.

 The example encodes metadata objects as ISO 19136 GML objects (with gml:id). XML
Schema definitions for metadata object types can also be derived using the ISO 19139

encoding rule or any other encoding.

 In the example, property references are encoded as property elements with URI content.
Alternatively, XLink XML attributes could have been used to reference property type def-

initions.

 The transformation for adding the means to reference object and property would have to
be defined in detail, so that it can be implemented (e.g. in ShapeChange). For example,

one aspect would be to which classifiers the new properties should be added. That would

be the classifiers identified by the metadataType tagged value of properties with stereo-

type <<propertyMetadata>>. If such a classifier is a subtype of another classifier that is

referenced that way, the new properties would only be added to the classifier that repre-

sents the root of such an inheritance tree.

10 In the example, a URI is used. This can resolve to a property definition of any kind, for example an ontological

definition of the property. The application will have to understand the format of the referenced resource,

which leads to a community-specific way of identifying properties.

Page 23

2.3.1.3 Metadata as Additional Data

This approach depends upon a transformation of the property stereotype <<proper-

tyMetadata>> into additional metadata properties. For each property with that stereotype, a

new property is created, with the metadata type that applies for the property (identified by

tagged value metadataType) as its value type. Figure 9 illustrates the result of this transfor-

mation, based upon the conceptual model shown in Figure 3.

Figure 9 – Property stereotype for metadata transformed to metadata properties

Since the metadata type is modeled as a type with identity, the transformation created directed

associations to that type, one for each property with the property stereotype <<proper-

tyMetadata>>. The names of such properties are used for constructing the names of the new

navigable association roles. In the example, the suffix “_metadata” is added to these names. Any

Page 24

other, non-empty suffix would work as well11. Once the associations to the metadata type have

been created, the property stereotype <<propertyMetadata>> is removed.

For the XML encoding, the transformed model can then have normal encoding rules (e.g., ISO

19136 or 19139) applied. Other than in the first approach (see section 2.3.1.1), the metadata val-

ues are now encoded in additional XML elements.

Listing 3 – XML example for Metadata as Additional Data approach

<xml xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <FeatureA gml:id="FA">

 <attribute1 xsi:nil="true" nilReason="…"/>

 <attribute1_metadata xlink:href="#M1"/>

 <roleAtoB xlink:href="#FB"/>

 <roleAtoB_metadata xlink:href="#M2"/>

 </FeatureA>

 <FeatureB gml:id="FB">

 <attribute2>category1</attribute2>

 <attribute2>category2</attribute2>

 <attribute2_metadata xlink:href="#M3"/>

 <roleBtoA xsi:nil="true" nilReason="…"/>

 <roleBtoA_metadata xlink:href="#M4"/>

 </FeatureB>

 <AttMeta gml:id="M1">...</AttMeta>

 <RoleMeta gml:id="M2">...</RoleMeta>

 <AttMeta gml:id="M3">...</AttMeta>

 <RoleMeta gml:id="M4">...</RoleMeta>

</xml>

Notes:

 The example in Listing 3 only shows metadata by reference. Metadata could also be en-
coded inline. The transformation could be extended to set the inlineOrByReference

tagged value on newly created metadata properties (to inline, byReference, or inlineOr-

ByReference). The target encoding rules (e.g. for XML Schema, JavaScript Object Notation

(JSON) Schema, and Structured Query Language (SQL) Data Definition Language (DDL))

ultimately define which encodings of metadata property values are available.

 In order to encode the new metadata properties in sequence with their corresponding

properties (e.g. attribute1_metadata directly after attribute1), as shown in the example,

the transformation will need to set the sequenceNumber tagged values appropriately.

The transformation could also support different behaviors, for example to encode the

new metadata properties after the whole set of actual properties.

11 The suffix could be a configuration parameter of the model transformation.

Page 25

One drawback of this approach is that it only supports a single metadata object per property;

providing metadata for individual property values would not be supported. In order to also sup-

port metadata for individual property values, a more complex transformation would be needed.

That transformation could:

 Create association classes, which would provide information with which individual val-

ues can be identified. However, it is not clear what kind of information this would be. A

new mechanism would likely need to be invented, creating an additional burden for im-

plementers.

 Create new metadata (data) types, with two properties: a value (with the value type of
the property that had a property stereotype for metadata) and metadata (whose value

type would be the metadata type that belongs to the property stereotype for metadata).

This would allow provision of metadata per value, with one level of indirection. It would

mean, however, that OCL expressions will likely need to be transformed, which would be

a very complex task.

Note that the discussion regarding the encoding of reasons for the absence of a property value is

the same as for the Data Referencing Metadata approach (see section 2.3.1.1).

2.3.1.4 Data with Metadata Range

In this approach, new metadata types are created for properties with stereotype <<proper-

tyMetadata>>. Listing 4 provides an example, where new classes BooleanMetadata, Fea-

tureAMetadata, FeatureBMetadata and FeatureBCategoryTypeMetadata have been created.

Listing 4 – XML example for Data with Metadata Range approach

<xml xmlns:gml="http://www.opengis.net/gml/3.2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink">

 <FeatureA gml:id="FA">

 <attribute1>

 <BooleanMetadata>

 <resourceConstraints>...</resourceConstraints>

 <absenceReason>...</absenceReason>

 <value xsi:nil="true" nilReason="…"/>

 </BooleanMetadata>

 </attribute1>

 <roleAtoB>

 <FeatureBMetadata>

 <resourceConstraints>...</resourceConstraints>

 <value xlink:href="#FB"/>

 </FeatureBMetadata>

 </roleAtoB>

 </FeatureA>

 <FeatureB gml:id="FB">

 <attribute2>

 <FeatureBCategoryTypeMetadata>

 <resourceConstraints>...</resourceConstraints>

 <value>category1</value>

 </FeatureBCategoryTypeMetadata>

 </attribute2>

Page 26

 <attribute2>

 <FeatureBCategoryTypeMetadata>

 <resourceConstraints>...</resourceConstraints>

 <value>category2</value>

 </FeatureBCategoryTypeMetadata>

 </attribute2>

 <roleBtoA>

 <FeatureAMetadata>

 <resourceConstraints>...</resourceConstraints>

 <absenceReason>...</absenceReason>

 <value xsi:nil="true" nilReason="…"/>

 </FeatureAMetadata>

 </roleBtoA>

 </FeatureB>

</xml>

This is somewhat similar to the Meta- and Reason-classes in the current NAS. However, Reason-

classes are no longer needed since value and absence reason are both properties of the new

metadata types.

This approach supports metadata for individual property values. With slight adjustments, it

could also be used to support metadata for sets of property values.

The approach could be realized with a model transformation. However, overall, this approach

leads to a rather complex encoding. OCL constraints would need to be transformed as well,

which is a very complex task. In addition, sharing and re-use of metadata objects is restricted,

since the metadata is now coupled with the property value.

Note: Sharing and re-use of metadata objects is not fully eliminated, because classes referenced

by metadata types, such as ResourceConstraints and SecurityConstraints in the example from Fig-
ure 4, have not been merged. Instances of these classes can still be shared and re-used. Only the

metadata types themselves, AttMeta and RoleMeta in the example from Figure 4, have been

merged and thus sharing and re-use of these metadata objects is no longer possible.

Note that the discussion regarding the encoding of reasons for the absence of a property value is

the same as for the Data Referencing Metadata approach (see section 2.3.1.1).

2.3.1.5 Summary

The following table compares the XML encoding approaches. Note that the investigation is based

on a conceptual model using the new property stereotype for metadata.

Page 27

Table 1 – Comparison of XML encoding approaches for property stereotype <<propertyMetadata>>

 Data Refer-

encing

Metadata

Metadata Ref-

erencing Data

Metadata as Additional

Data

Data with

Metadata

Range

Does the ap-

proach support

metadata for in-

dividual values?

Yes

(because each

property

value element

can have a

metadata ref-

erence)

No

(at least not

without in-

creasing the

level of com-

plexity)

No

(at least not without increas-

ing the level of complexity)

Yes

(because the

value of each

property ele-

ment is a com-

plex element

that contains

the actual

value and

metadata for

that value)

Is access to

metadata for a

given property

straightfor-

ward?

Yes

(just follow

the reference

provided by

the metadata

XML attrib-

ute)

No

(since a non-

standardized

mechanism is

needed to look-

up the metadata

object that ap-

plies to a prop-

erty)

Yes

(just follow the reference

provided by the metadata

property element, or directly

access the metadata if en-

coded inline)

Yes

(since the

metadata is en-

coded together

with the value)

Can the neces-

sary referenc-

ing (of data or

metadata) be

realized with

standard refer-

encing mecha-

nisms?

Yes

(normal ob-

ject referenc-

ing mecha-

nisms can be

used)

No

(a special mech-

anism is needed

to identify the

feature prop-

erty)

Yes

(normal object referencing

mechanisms can be used;

metadata could also be exclu-

sively encoded inline, avoid-

ing the need for a referencing

mechanism)

Not applicable

(since

metadata is di-

rectly encoded

with the data)

Is it easy to ig-

nore the

metadata (if all

you are inter-

ested is the

data)?

Yes

(since with-

out the new

metadata

XML attrib-

ute, every-

thing else, i.e.

the actual

data, is en-

coded as

usual; so the

new XML at-

tribute could

simply be ig-

nored)

Yes

(because the ac-

tual data is en-

coded as usual)

Yes

(if 1. new metadata proper-

ties can be distinguished from

the properties with actual

data and 2. metadata is not

encoded inline)

No

(because the

metadata has

been merged

with the actual

data)

Does the ap-

proach require

No No No Yes

Page 28

 Data Refer-

encing

Metadata

Metadata Ref-

erencing Data

Metadata as Additional

Data

Data with

Metadata

Range

transfor-

mations of OCL

expressions?

(Presumes that

these expres-

sions do not

span from data

to metadata)

(because the

merging intro-

duces a level of

indirection)

Is filtering of

data with cer-

tain metadata

characteristics

with Extensible

Stylesheet Lan-

guage (XSL)

Transformation

(XSLT) effi-

cient?

No

(because

metadata ob-

jects need to

be derefer-

enced)

No

(because the

metadata that

applies to a cer-

tain value al-

ways needs to

be identified

through a

search within

the whole set of

metadata ob-

jects)

Inline:

Yes

(since the metadata is en-

coded with the data)

By-reference:

No

(because metadata objects

need to be dereferenced)

Yes

(since the

metadata is en-

coded with the

data)

Is filtering of

data with cer-

tain metadata

characteristics

with a Web Fea-

ture Service 2.0

efficient?

No

(there is no

XML Path

Language

(XPath) ex-

pression sup-

ported by Fil-

ter Encoding

Specification

(FES) 2.0 to

identify the

metadata ele-

ments of a

property)

No

(it is not possi-

ble at all as

there is no way

to get from the

feature prop-

erty to the

metadata)

Inline:

Yes

(as the metadata elements

can be identified using XPath

expressions)

By-reference:

No

(there is no XPath expression

supported by FES 2.0 to iden-

tify the metadata elements of

a property)

Yes

(as the

metadata ele-

ments can be

identified us-

ing XPath ex-

pressions)

ShapeChange:

Does this ap-

proach require

a model trans-

formation?

No If the concep-

tual model is

changed to in-

clude the “ob-

ject” and “prop-

erty” properties

(Figure 5):

Yes Yes

Page 29

 Data Refer-

encing

Metadata

Metadata Ref-

erencing Data

Metadata as Additional

Data

Data with

Metadata

Range

No

Otherwise (the

conceptual

model is as

shown in Figure

4):

Yes

ShapeChange:

Is an XML

Schema target

customization

required?

Yes

(to add the

metadata

XML attrib-

ute)

No No No

ShapeChange: If

absenceReason

is mapped to

xsi:nil and nil-

Reason, is an

XML Schema

target customi-

zation re-

quired?

Yes

(the changes would be similar for all options;

in addition https://shapechange.net/targets/xsd/extensions/#rule-xsd-cls-union-

direct can be deprecated or deleted)

The comparison of the four approaches shows that - for the purpose of GML based exchange of

NAS data – the first approach is most promising. It is therefore recommended to realize the

property stereotype <<propertyMetadata>> in GML application schemas using the Data Refer-

encing Metadata approach (see section 2.3.1.1).

Note: This recommendation does not apply to GML application schemas with limited encoding

options, where the addition of the metadata XML attribute is not allowed or supported, such as

the GML Simple Features (GML-SF) encoding. Section 2.3.2 explains how the property stereotype

<<propertyMetadata>> can be implemented in such encodings.

2.3.2 JSON, SQL, GML-SF Encodings

The recommended approach for representing the property stereotype <<propertyMetadata>> in

the full GML encoding (see section 2.3.1.1) is based on the ability to provide additional infor-

mation for an XML element – in this case the reference to a metadata object – in the form of an

XML attribute. Encodings like JSON, SQL, and GML Simple Features (GML-SF), do not have this

ability, or an equivalent mechanism. Therefore, these encodings require a different approach for

realizing the property stereotype.

https://shapechange.net/targets/xsd/extensions/#rule-xsd-cls-union-direct
https://shapechange.net/targets/xsd/extensions/#rule-xsd-cls-union-direct

Page 30

The Metadata as Additional Data approach (see section 2.3.1.3) is recommended for the JSON,

SQL, and GML-SF encodings. A common model transformation is applied, to create an additional

property corresponding to each property that has that stereotype in the original model. The type

of such a new property is the metadata type that is identified by tagged value metadataType.

The encoding of the transformed model would be supported for JSON, SQL, and GML-SF encod-

ings, since the stereotype <<propertyMetadata>> has been turned into regular model elements

(additional properties), which are supported in these encodings12.

Listing 5 shows how this could look like for JSON. It represents the content of the example from

Listing 3, with the exception of nilReason attributes13 and the content of the metadata objects
(which is only hinted at in Listing 3, anyway). Note that object references are encoded in this ex-

ample as JSON Pointers14, since all objects from the example are contained in one JSON docu-

ment. If all objects were available online in separate documents, full URLs should be used.

12 Creating the encoding may require subsequent model transformations. Chapter 7 of the OGC Testbed-13: NAS

Profiling Engineering Report (OGC document 17-020r1, available online at http://docs.opengeospa-

tial.org/per/17-020r1.html), for example, documents the transformations that are necessary to generate a

GML-SF0 encoding from a NAS schema profile.

13 The OGC Testbed-14: Application Schemas and JSON Technologies Engineering Report (OGC document 18-

091r2, available online at http://docs.opengeospatial.org/per/18-091r2.html), chapter 5.3.3, presents ideas

for JSON Schema conversion rules, one of which is the creation of nilReason properties. Note, however, that the

Engineering Report recommends to develop new JSON Schema conversion rules, and to revise the

ShapeChange JSON Schema target to support these rules. This work will need to be done in order to derive

JSON Schemas from the NAS.

14See IETF RFC 6901, JavaScript Object Notation (JSON) Pointer, available online at

https://tools.ietf.org/html/rfc6901.

http://docs.opengeospatial.org/per/17-020r1.html
http://docs.opengeospatial.org/per/17-020r1.html
http://docs.opengeospatial.org/per/18-091r2.html
https://tools.ietf.org/html/rfc6901

Page 31

Listing 5 – JSON example for Metadata as Additional Data approach

[

 {

 "id": "FA",

 "attribute1": null,

 "attribute1_metadata": "/2",

 "roleAtoB": "/1",

 "roleAtoB_metadata": "/3"

 },

 {

 "id": "FB",

 "attribute2": [

 "category1",

 "category2"

],

 "attribute2_metadata": "/4",

 "roleBtoA": null,

 "roleBtoA_metadata": "/5"

 },

 {

 "id": "M1"

 },

 {

 "id": "M2"

 },

 {

 "id": "M3"

 },

 {

 "id": "M4"

 }

]

A benefit of this encoding approach is that metadata objects are encoded as individual objects,

and can be stored and referenced individually, as in the recommended approach for the XML en-

coding. The implementation for managing the metadata can thus be similar for multiple encod-

ings. A metadata service, for example, could expose metadata objects in both XML and JSON en-

coding.

Note: As documented in section 2.3.1.3, the transformation currently only supports metadata for

all values of a property, not for individual values. If metadata for individual values was neces-

sary, then a more complex transformation would be needed (section 2.3.1.3 presents two op-

tions).

2.3.3 Linked Data Encoding

Creating a linked data encoding from an application schema that uses property stereotype

<<propertyMetadata>> is out-of-scope for this project. Nevertheless, a short analysis was per-

formed to identify how such an encoding could be realized, and to get a better understanding of

the state-of-the-art in this regard.

Page 32

Linked data is represented through graph models, the most prominent of which are RDF and

Property Graphs. RDF is standardized by W3C. Property Graphs have not yet been standardized.

Graph models store statements in the form of subject-predicate-object triples. A predicate

thereby represents a UML property. In RDF, the same subject may be connected to different ob-

jects via the same predicate. This resembles a UML property with a set of values. Property

Graphs additionally support multiple triples with the same subject, predicate, and object. The

question is if and how annotations of these triples are supported by these two graph models.

[1], a position statement from a W3C workshop held early 2019, provides valuable insights into

this topic, also providing references to useful further reading.

According to these sources, the following approaches for property metadata in linked data exist:

 Property Graph (Edges)

 RDF Reification

 Singleton Properties

 RDF* and SPARQL* (extensions of RDF and SPARQL Protocol and RDF Query Language
(SPARQL))

Shortcomings of the first three approaches are briefly discussed in [2]. However, the paper pro-

poses an extension of RDF and SPARQL – aptly named RDF* and SPARQL* - which is quite prom-

ising:

 It proposes to make statements about RDF triples a first-class citizen of RDF as well as
the RDF query language SPARQL. As a result, the verbosity that would be caused by using

RDF Reification can be avoided.

 Conversions from/to RDF data using RDF Reification as well as Property Graphs exist. A
user could thus start capturing linked data as RDF, using RDF Reification to encode prop-

erty metadata, and convert the RDF data to RDF* data or a Property Graph later on –

when necessary or desirable (e.g. for performant execution of specific graph queries).

Note that when using RDF Reification, queries and OWL based reasoning on the “normal”

data, i.e. not the metadata statements, can be performed as usual. SPARQL queries that

involve metadata are possible, although they would be verbose (with pure RDF, RDF Rei-

fication, and SPARQL - not so with RDF* and SPARQL*). The extent to which OWL rea-

soning on metadata statements is possible and useful would require further analysis15.

 The extension can be implemented as a wrapper on top of existing triple stores. At the

same time, it allows for native implementations, with potentially better performance.

Note that a lossless conversion between an RDF* graph and a Property Graph is possible, but if

the RDF* graph contained metadata statements on triples with literal value, the resulting Prop-

erty Graph would be atypical. That is because typically, the properties of nodes and edges in a

15 The current NSG Enterprise Ontology (NEO) is based on OWL to support reasoning. However, useful infor-

mation may also be deduced using other or additional approaches, for example using query languages like

SPARQL and Cypher (a query language for Property Graphs).

Page 33

Property Graph only have literal values, and while edges in a Property Graph have identity them-

selves and can carry properties, that is not the case for the properties of a node. A metadata

statement on an RDF triple with literal value would therefore require that the Property Graph

represents the literal value with a node. This is described in more detail in [3].

To summarize: The linked data community has developed multiple approaches for representing

property metadata, and is still actively working to improve the functional capabilities for han-

dling such data. RDF Reification presents a standardized approach for representing property

metadata, which works for any kind of RDF triple (unlike Property Graphs, which typically sup-

port and use metadata only for properties whose value is an identifiable object). RDF* offers a

way to convert RDF data which uses RDF Reification to a less verbose format that is easier to
query (using SPARQL*), and to also convert this data to Property Graphs (which can improve

performance when performing certain graph analysis tasks). The property stereotype <<proper-

tyMetadata>> can therefore be represented in a linked data encoding with existing approaches.

RDF Reification, for example, would be a native and standardized representation of property

metadata. Listing 6 and Listing 7 give an example of encoding the property metadata from the

example in Listing 1 using RDF Reification. The underlying RDF data in Listing 6 and Listing 7 is

the same; just the encoding is different (in the first case Turtle; in the second case RDF/XML).

Listing 6 – Example of property metadata encoded using RDF Reification – Turtle syntax

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix metainst: <http://example.org/metadata/instances/> .

@prefix meta: <http://example.org/metadata/ontology/> .

@prefix exinst: <http://example.org/data/instances/> .

@prefix ex: <http://example.org/data/ontology/> .

exinst:FA

 a ex:FeatureA ;

 ex:roleAtoB exinst:FB .

exinst:FB

 a ex:FeatureB ;

 ex:attribute2 "category1", "category2" .

_:b0

 a rdf:Statement ;

 rdf:subject exinst:FA ;

 rdf:predicate ex:roleAtoB ;

 rdf:object exinst:FB ;

 meta:metadata metainst:M2 .

_:b1

 a rdf:Statement ;

 rdf:subject exinst:FB ;

 rdf:predicate ex:attribute2 ;

 rdf:object "category1" ;

 meta:metadata metainst:M3 .

_:b2

 a rdf:Statement ;

Page 34

 rdf:subject exinst:FB ;

 rdf:predicate ex:attribute2 ;

 rdf:object "category2" ;

 meta:metadata metainst:M3 .

Listing 7 – Example of property metadata encoded using RDF Reification – RDF/XML syntax

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ex="http://example.org/data/ontology/" xmlns:meta="http://exam-

ple.org/metadata/ontology/">

 <rdf:Description rdf:about="http://example.org/data/instances/FA">

 <rdf:type rdf:resource="http://example.org/data/ontology/FeatureA"/>

 <ex:roleAtoB rdf:resource="http://example.org/data/instances/FB"/>

 </rdf:Description>

 <ex:FeatureB rdf:about="http://example.org/data/instances/FB">

 <ex:attribute2>category1</ex:attribute2>

 <ex:attribute2>category2</ex:attribute2>

 </ex:FeatureB>

 <rdf:Statement rdf:nodeID="b0">

 <rdf:subject rdf:resource="http://example.org/data/instances/FA"/>

 <rdf:predicate rdf:resource="http://example.org/data/ontology/roleAtoB"/>

 <rdf:object rdf:resource="http://example.org/data/instances/FB"/>

 <meta:metadata rdf:resource="http://example.org/metadata/instances/M2"/>

 </rdf:Statement>

 <rdf:Statement rdf:nodeID="b1">

 <rdf:subject rdf:resource="http://example.org/data/instances/FB"/>

 <rdf:predicate rdf:resource="http://example.org/data/ontology/attrib-

ute2"/>

 <rdf:object>category1</rdf:object>

 <meta:metadata rdf:resource="http://example.org/metadata/instances/M3"/>

 </rdf:Statement>

 <rdf:Statement rdf:nodeID="b2">

 <rdf:subject rdf:resource="http://example.org/data/instances/FB"/>

 <rdf:predicate rdf:resource="http://example.org/data/ontology/attrib-

ute2"/>

 <rdf:object>category2</rdf:object>

 <meta:metadata rdf:resource="http://example.org/metadata/instances/M3"/>

 </rdf:Statement>

</rdf:RDF>

Even though RDF Reification has some shortcomings, these can be solved through conversions

to other formats such as RDF* and Property Graphs.

The definition of conversion rules for property stereotype <<propertyMetadata>> in a linked

data encoding is future work. However, here are some ideas:

 Ignore the stereotype. In actual RDF data, RDF Reification would be used to link to the
metadata (object) for a given property value. That link could be represented by an RDF

property, which should be standardized in order to enhance interoperability.

Page 35

o Note that this would allow an implementation for managing metadata, men-

tioned in section 2.3.2, to not only provide metadata objects encoded in XML and

JSON, but also in a linked data format (RDF).

 Instead of ignoring the stereotypes, add sub-properties of the metadata property pro-
posed in the previous bullet item to the ontology – one for each type identified by tagged

value metadataType on properties with stereotype <<propertyMetadata>> from the ap-

plication schema that is converted. The range of such a sub-property would be the

metadata class that has been derived from the appropriate metadata type (e.g. AttMeta

and RoleMeta as illustrated in Figure 4).

 In an ontology, a metadata class could be defined as a subclass of RDF Statement. Then
the actual metadata information could be defined directly as such a statement, which

would prevent the need for an intermediate metadata property (such as meta:metadata

used in the example from Listing 7).

Note: RDF Reification supports metadata for individual property values, since the object of an

RDF statement is a single value. However, it is unclear if metadata for whole sets of property val-

ues is supported, and whether this would be different for RDF*. Further analysis is required.

Since edges in Property Graphs have their own identity, metadata is necessarily also given per

object reference, and thus per object value. Note, however, that Property Graphs typically do not

support metadata for properties with a literal value.

Note: Interestingly enough, an RDF Statement would solve the issue with the second approach

for encoding the property stereotype for metadata (see section 2.3.1.2, Metadata Referencing

Data) – at least regarding the encoding. The reason is that such a statement has well-defined

properties to represent a subject, a predicate, and an object. However, it really only provides a

well-defined solution for the (RDF) encoding, and does not solve the issues with conceptual

modeling (as documented in section 2.3.1.2).

Page 36

3 Annex A - Multiple Property Stereotypes for Metadata

This Annex documents a slightly different approach for solving the complexity issues caused by

the current modeling approach of the NAS. The differences from the recommended approach –

of having a single stereotype for metadata – are explained, as well as the reasons why the differ-

ent approach is inferior to the recommended one.

This alternative approach is based on using multiple property stereotypes for metadata instead

of a single stereotype. Figure 10 shows the differences from the recommended approach.

Figure 10 - Example for an alternative approach for modeling property metadata in the NAS, using multiple property

stereotypes for metadata

The figure is a combination of the UML shown in Figure 3 and Figure 4, with the following differ-

ences: The properties use the stereotypes <<attMeta>> and <<roleMeta>> and the metadata

types have an additional stereotype (<<propertyMetadata>>).

Page 37

The idea behind having multiple property stereotypes for metadata was that each of them would

visually indicate to the user which type of metadata is associated with a given property. The

names of these stereotypes would be equal to (ignoring case) the names of the applicable

metadata type. In the example, <<attMeta>> would thus identify type AttMeta as the metadata

type. It would be possible to use different stereotypes for different attributes and different asso-

ciation roles. This capability was deemed to be useful if different metadata types apply for these

properties.

Eventually, however, the decision was made to use a single property stereotype, <<proper-

tyMetadata>>, instead of using multiple property stereotypes for metadata. The reasons for that

decision are described in the following paragraphs.

Multiple property stereotypes for metadata would all have represented the same concept: that

metadata is associated with the property. A benefit would have been that the stereotype name

directly indicated of which type the metadata for a property is. However, the approach required

that metadata types had a specific stereotype (<<propertyMetadata>>, as shown in Figure 10),

in order to know which of potentially multiple stereotypes defined for a property actually are

property stereotypes for metadata. That stereotype would have enabled tools like ShapeChange

to determine that a property stereotype – for example <<attMeta>> – really is a property stereo-

type for metadata, and to differentiate this from situations in which a property stereotype coin-

cidentally has the same name as one of the types contained in the UML model.

A single property stereotype suffices to indicate that metadata is associated with the property. A

single, well-known property stereotype directly provides the relevant meaning to tools like

ShapeChange, which therefore no longer need to search for metadata types with a specific stere-

otype. In fact, the approach with a single property stereotype for metadata works without the

need for a specific stereotype on metadata types. In the recommended approach, the metadata

type for a property is defined by a tagged value (metadataType).

The recommended approach is consistent with the recommended approach for the use of

<<voidable>> (described towards the end of section 2.2), where the set of void reasons that are

applicable for a given property is represented by an enumeration, which is identified by a tagged

value (voidReasonType) and does not require any additional specific stereotype.

To summarize, the approach of only using a single property stereotype is superior to that of us-

ing multiple property stereotypes for metadata, because it:

 improves clarity (a single, well-known stereotype identifies the concept of a property be-
ing associated with metadata),

 ensures consistency (because it is in line with how the <<voidable>> stereotype and the

link to the void reason type is modeled), and

 avoids modeling overhead (because it avoids having multiple stereotypes for properties
with different types of metadata and it does not require the presence of a specific stereo-

type on these metadata types).

Page 38

4 Bibliography

[1] O. Hartig, "Position Statement: The RDF* and SPARQL* Approach to Annotate Statements in

RDF and to Reconcile RDF and Property Graphs," 2019.

[2] O. Hartig, "RDF* and SPARQL*: An Alternative Approach to Annotate Statements in RDF," in

International Semantic Web Conference, 2017.

[3] O. Hartig, "Reconciliation of RDF* and Property Graphs," 2014.

	1 Terms and Definitions
	1.1 Abbreviated Terms
	1.2 Definitions
	1.2.1 Application schema
	1.2.2 Class
	1.2.3 Conceptual formalism
	1.2.4 Conceptual model
	1.2.5 Conceptual schema
	1.2.6 Conceptual schema language
	1.2.7 Model
	1.2.8 Schema
	1.2.9 Stereotype
	1.2.10 Universe of discourse

	2 Property Stereotype for Metadata in Application Schemas
	2.1 Current NAS Modeling Approach
	2.2 Platform Independent Modeling with Property Stereotype for Metadata
	2.3 Platform-Specific Encoding for Property Stereotype <<propertyMetadata>>
	2.3.1 XML Encoding
	2.3.1.1 Data Referencing Metadata
	2.3.1.2 Metadata Referencing Data
	2.3.1.3 Metadata as Additional Data
	2.3.1.4 Data with Metadata Range
	2.3.1.5 Summary

	2.3.2 JSON, SQL, GML-SF Encodings
	2.3.3 Linked Data Encoding

	3 Annex A - Multiple Property Stereotypes for Metadata
	4 Bibliography

